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The cancer research community has begun to address thein silico modeling approaches, such as quantitative
structure-activity relationships (QSAR), as an important alternative tool for screening potential
anticancer drugs. With the compilation of a large dataset of nucleosides synthesized in our laboratories,
or elsewhere, and tested in a single cytotoxic assay under the same experimental conditions, we
recognized a unique opportunity to attempt to build predictive QSAR models. Here, we report a systematic
evaluation of classification models to probe anticancer activity, based on linear discriminant analysis
along with 2D-molecular descriptors. This strategy afforded a final QSAR model with very good overall
accuracy and predictability on external data. Finally, we search for similarities between the natural
nucleosides, present in RNA/DNA, and the active nucleosides well-predicted by the model. The structural
information then gathered and the QSAR modelper seshall aid in the future design of novel potent anticancer
nucleosides.

Introduction

The nucleoside analogues (NAs) were among the first
chemotherapeutic agents to be introduced for the medical
treatment of cancer.1-4 These chemicals include several ana-
logues of physiological pyrimidine or purine nucleosides and
nucleobases, which are thought to interact with various intra-
cellular targets involved in the metabolism of physiological
nucleosides and DNA synthesis. Their cytotoxic activity against
a panel of tumorsin Vitro has been extensively studied in the
past, in particular against murine leukemia L1210/0 cells.5,6 For
instance, it has been shown that NAs such as the 5-substituted-
2′-deoxyuridines suppress tumor cell proliferation by inhibition
of thymidylate synthase,6 an enzyme essential in the synthesis
of DNA. The clinical use of NAs, however, is limited by
important side-effects and primary or acquired drug resistance,4

thus providing opportunities for the development of new, more
efficient analogues of this sort.

Finding new drugs is a complex, expensive, and very time-
consuming task, as there is no single systematic way to
automatically discover a drug even when the disease, targets,
and molecular mechanism(s) of drug activity are well under-
stood.3,4,7 There are literally millions of candidate molecules
and experiments that cannot be carried out on every one due to
prohibitive costs both in terms of time and money. Lately, the
rational drug design strategies, especially thein silico-based
approaches, have emerged as a promising alternative or
complementary tool toward the effective screening of potential
drugs.In silico approaches include for example the quantitative
structure-activity relationship (QSAR) modeling techniques,
which are increasingly attracting the attention of medicinal

chemists as well as of the pharmaceutical industry.8-19 QSAR
modeling may be better regarded as an exercise to filter drug
candidates, before they are subjected to more intensive calcula-
tions such as docking or an experimental measurement of
activity (in Vitro) and under real conditions (in ViVo) last.

Almost all QSAR techniques rely upon the use of molecular
descriptors, which aim at encoding useful pshysicochemical
information to enable correlation of molecular structure with
biological activity. There may be thousands of molecular
descriptors nowadays with potential for being applied in drug
design,20,21particularly in anticancer activity predictions. Among
others, the topological indices (TIs) have become widely
applicable due to their great success in many diverse QSAR
studies including cancer related research.8,9,11,12TI descriptors
are based on graph-theoretical concepts and derived mainly from
2D-molecular connectivity but also, to a certain extent, from
atom types and electronic environment. They account for a large
number of molecular properties, mostly of the steric attributes
of the molecule such as molecular size, branching, and to a
certain degree, shape.20,21

For years our research group has been engaged in the design,
synthesis, and evaluation of nucleoside analogues in an effort
to develop potential anticancer or antiviral agents.22-32 We
recognized a unique opportunity when we could assemble a set
of over 200 NA compounds, previously synthesized in one our
laboratories,25,26,33-37 or elsewhere,8,38-58 and measured in a
single, consistent cytotoxic assay. With the desire to build a
reliable predictive QSAR model from such data that could be
used to probe anticancer activity, we examined the use of 2D
descriptors along with linear discriminant analysis and feature
selection algorithms. Our final QSAR model exhibits very good
cross-validation statistics and perform well on an external
validation set comprising other NA chemicals designed by
us,30-37 many of which with unknown activity (that are being
reported here for first time). Finally, we analyzed the key
structural features present in active NAs by means of a similarity
study.
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Results and Discussion

Model Calibration. The best classification model derived
from the training set (from now on denoted as model 1), by
combining the LDA and FS techniques along with a 2D
topological structure representation, is given below together with
the statistical parameters of the LDA, while the selected
descriptors are shown in Table 1.

The F value, large sample size, largeF index, and smallp
value are indicative of the model’s statistical significance. In
addition, the values of the Wilksλ statistic (λ can take values
from zero, perfect discrimination, to one, no discrimination) and
of the Mahalanobis distance (a measure of the separation
between the active and inactives groups) show that the model
displays an adequate discriminatory power for differentiating
both groups. The latter is also confirmed by the classification
results; the model correctly classified 82.4% of the 91 cytotoxic
compounds and 84.7% of the 150 inactives, giving rise to an
overall 83.8% effective discrimination of the 241 training set
compounds.

Further analysis of this classification model should only be
carried out after checking the reliability of preadopted assump-
tions. First, LDA establishes a linear, additive relation between
the molecular descriptors and the underlying bioactivity, and,
in fact, this is the simplest mathematical form that might be
envisaged for the model in absence of anya priori information.
Nevertheless, by looking at the distribution of the standardized
residuals (observed minus predicted divided by the square root
of the residual mean square) for all cases (Figure 1), no specific
pattern is seen, thereby reinforcing the idea that the model does
not exhibit a nonlinear dependence.

Another aspect deserving special attention is the degree of
collinearity among the variables of the model, but that may
easily be diagnosed by analyzing the cross-correlation matrix.
As seen in Table 2, the pairs of descriptors (D/Dr06; piPC10),

(D/Dr06; MPC10), (piPC10; piPC09), (piPC10; MPC10), and
(piPC09; MPC10) are strongly correlated with each other. Rather
than deleting any of such descriptors, it is of interest to examine
the performance of orthogonal complements in modeling the
anticancer activity.

Following the Randic´ technique, we determined orthogonal
complements for all variables in model 1, which in turn were
further standardized, to then find the best five-variable equation
(model 2):

where the symboliΩX means the orthogonal complement of
variable X, the superscript referring to the variable in the
equation employed to obtain the residuals.

As can be noticed, the descriptors ACC and X5A have been
excluded, as they were found to be not statistically significant.
That had however no effects on the overall fitness of the model
as the statistics are as robust as before (see eq 1), though the
classifications of the active/moderate-active slightly improved
(84.62%; see eq 1 and also the Supporting Information), which
therefore increased the percentage of overall discrimination
(86.65%). Yet there are significant differences between both
models as regards the interpretation of the results. By comparing
eq 1 with eq 2, one can see that there are no changes in the
sign of the coefficients save for the one associated to the
constant. The relative contributions of the variables in the
orthogonal-descriptor model are nevertheless significantly dif-
ferent to those in the nonorthogonalized model. For example,
the variables MATS8e and MPC10 have similar contributions
(in absolute terms) in model 2, while in model 1 the contribution
of MATS8e is 9 times larger than that of MPC10. Therefore,
for purposes of QSAR interpretability, we shall consider the
orthogonal-descriptor model defined in eq 2.

Let us now check another important parametric assumption
of LDA, i.e., multivariate normality. Traditionally, one starts
by plotting the individual frequency distributions of each
variable. Figure 2 shows the plots for the histograms of
frequency distributions of the different variables in model 2,
divided by active and nonactive groups, respectively. Attached

Table 1. The Seven 2D-Molecular Descriptors Used in the Initial
Classification Model (model 1; eq 1)

symbol definition

D/Dr06 distance/detour ring index of order 6
AAC mean information index on atomic composition
MATS8e Moran autocorrelation- lag 8/weighted by

atomic Sanderson electronegativities
X5A average connectivity index chi-5
piPC10 molecular multiple path count of order 10
MPC10 molecular path count of order 10
piPC09 molecular multiple path count of order 9

Table 2. Intercorrelation among the Seven Descriptors Selected as
Statistically Significant by LDAa

AAC D/Dr06 piPC10 X5A MATS8e piPC09 MPC10

AAC 1.00 -0.27 -0.37 0.18 -0.24 -0.34 -0.43
D/Dr06 1.00 0.57 0.09 0.26 0.65 0.74
piPC10 1.00 -0.22 0.21 0.90 0.84
X5A 1.00 -0.12 -0.24 -0.34
MATS8e 1.00 0.23 0.35
piPC09 1.00 0.91
MPC10 1.00

a Significant correlations are marked in bold.

P ) 0.027D/Dr06+ 11.338AAC+ 4.104MATS8e-
191.215X5A+ 0.011piPC10- 0.030MPC10-

0.013piPC09- 6.480 (1)

N ) 241 F ) 34.40 F(7,233)) 25.65 p < 10-5

λ ) 0.56 D2 ) 3.25

Figure 1. Distribution of the standardized residuals for all cases
studied.

P ) 1.828‚2ΩD/Dr06 + 3.646‚3ΩpiPC10+
0.455‚5ΩMATS8e- 3.708× 6ΩpiPC09- 0.549×

7ΩMPC10+ 0.161 (2)

N ) 241 F ) 48.2 F(7,233)) 35.74 p < 10-5

λ ) 0.57 D2 ) 3.21
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to each plot are also the results derived from the Kolmogorov-
Smirnov statistical test (d). At first sight, these plots and
the d values suggest that not all variables exhibit adequate
normal distribution, say at least the D/Dr06 and piPC09
descriptors. However, lack of individual normality is not by
itself enough for rejecting the hypothesis of multivariate
normality. In fact, for checking multivariate normality, one
should instead examine the discriminant function, which takes
into account the interactions among variables. Accordingly, a
visual inspection of the normality plots and frequency distribu-
tions for the discriminant function (see Figure 2), as well as
the calculatedd values for both groups (actives:d ) 0.067;
inactives: d ) 0.111;p > 0.200 in both cases), lead us to accept
that hypothesis.

Moving on now to the hypothesis of homocedasticity, a
possible problem regarding the homogeneity of the (co)variances
is suggested by the Box’s M statistical test (p < 0.01), although
this test can be overly sensitive to large data files59 which is
likely what happened here. This nevertheless increases the
likelihood that a case belongs to the higher dispersion group,
and, in this sense, adjusting thea priori probabilities can
greatly improve the overall classification rate of the discriminant
model.

A different, better threshold for thea priori classification
probability can be estimated by means of the receiver operating
characteristics (ROC) curve.60 This is a useful technique not
only for obtaining the best thresholds but also for organizing
classifiers.61,62 As Figure 3 shows, the optimal threshold for
predicting the active chemicals with the present QSAR model
is 0.52. Further, one can see that the model is not a random,
but a truly statistically significant, classifier, since the area under
the ROC curve is significantly higher than the area under the
random classifier curve (diagonal line).

Model Interpretation and Validation. With regard to
QSAR modeling, our main goal was not only to establish a
robust explanatory model but also to ensure good
generalization performance. This was first accomplished by
means of internal cross-validation (CV) of the model. The
statistics and classification results reported in Table 3
correspond to five independent leave-20%-out CV runs, each
involving a different, randomly chosen partition into training
and a test set.

As can be seen, the model is robust and shows little
dependence on the composition of the training and test sets. It
also shows good predictive power, judging from the averages

Figure 2. Histograms for the frequency distributions of all variables in model 2 (eq 2), considering active/moderate-active groups(a) and inactive
groups(b).
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computed for the overall classification results in the training
and predictive sets generated in each CV run (85.48% and
82.53%, respectively).

For a final validation, an external test set (20 compounds)
was assembled from other NAs synthesized previously in one
of our laboratories. Some of these compounds have already been
evaluated experimentally in terms of cytotoxic activity,23,24but
most have not. For this whole external set, the percentage of
overall discrimination is 75% (15 out of 20), and, simulta-
neously, the model correctly classifies 80% (4 out of 5) of
actives and 73.33% (11 out of 15) of inactives (Table 4), which
is quite impressive given the diversity of such set and the
complexity of the biologic response being modeled. It also
reveals the good predictive ability of the present model.

Finally, the model 2 interpretation was made on the basis of
structural differences between noncytostatic and cytostatic
carbocyclic nucleosides included in training and external test
set (well-predicted by model 2), respectively, and based on the
analysis of model 2. For this propose, we consider that three of
the most important variables are related with molecular path
counts (MPC10, piPC10, and piPC09). The path counts are
molecular descriptors obtained from an H-depleted molecular
graph and are vertex invariants encoding that molecular
environment, defined as the number of path lengthm starting
from theith vertex to any other vertex in the graph. A path (or
self-avoiding walk) is a walk without any repeated vertices.20

The path length is the number of edges associated with the path,
and this value is increased with the ring size, ring numbers,
and the ramification number.63

With the interpretation and application of model 2, we can
design an active structure from an inactive one. For this purpose,
Scheme 3 shows the structural representation of chemical 195
(inactive) and chemical 11d (active). As can be seen, both NAs

have the same purine base, but their carbocycles differ. For
improving biological activity, we increased the number of
molecular path counts on the order of 10, through increasing
of length of theN-glycoside bond, size of carbocyclic ring
(from cyclobutyl to cyclopentyl), and its branchings. Thus we
achieved a significant increase of piPC10 for chemical 11d with

Figure 3. Receiver operating characteristic (ROC) curve for the
classification model (model 1; eq 1).

Table 3. Results from the Cross-Validation Leave-group-out Procedurea

CV-run λ D2 F %ACG (T)b %ACG (P)b

1 0.529 3.750 33.360 85.49 77.08
2 0.528 3.760 33.430 89.12 79.17
3 0.551 3.430 30.459 85.49 83.33
4 0.607 2.715 24.133 83.42 81.25
5 0.602 2.786 24.547 83.85 91.84
average 0.563 3.288 29.186 85.48 82.53

a Results obtained with model 2 (eq 2) after removing∼20% of
compounds from the original data set (48 out of 241).b %ACG (T) and
%ACG (P) are the percentage of good overall classification in the training
and predicting sets, respectively.

Table 4. The 20 Carbanucleosides Used in the External Prediction Set
along with the Observed Cytotoxicity against the Cellular Line L1210/0
and Classification (a posteriori Probabilities) According to Model 2
(eq 2)

no. R Z
IC50

(µM)a
prob
(%)b

predicted
classc

Active Chemicals
10c NH-cyclobutyl - 90.80 100 +1
11d - CH 50.03 100 +1
12d - N 44.64 100 +1
19h - - 169.66 5.29 -1
20i - - 105.07 97.68 +1

Inactive Chemicals
1a NH2 - >200 10.89 -1
2a OH - >200 15.21 -1
3a OCH3 - >200 14.64 -1
4a Cl - >200 24.76 -1
5a Ph - >200 78.79 +1
6a PhOCH3 - >200 98.95 +1
7b - - >200 27.61 -1
8c Cl - >200 100 +1
9c NH-cyclopropyl - >200 100 +1
13d OH CH >200 2.7 -1
14d NH2 CH >200 2.43 -1
15d NH2 N >200 3.45 -1
16e - - >200 8.56 -1
17f - - >200 17.34 -1
18g - - >200 15.13 -1

a 50% inhibitory concentration or compound concentration required
to reduce proliferation of tumors cells by 50%.b A posteriori probability
of classifying a chemical as active, according to model 2.c Values of+1
and -1 stand for compounds with and without cytotoxic activity,
respectively.

Scheme 1.General Procedures for the Preparation of the Test
Set Nucleoside Analogues Belonging to Seriesa, b, andc
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respect to chemical 195; in contrast, piPC09 does not show an
experimentally significant increment, probably because these
factors exert major influence over a path count of higher order.
It is important to remark that piPC10 has a contrary effect over
biological activity if it is compared with piPC09. Thus, we can
explain the increment in cytostatic activity of chemical 11d,
based on our model 2. A similar behavior could be analyzed
for the chemicals 197 (no active) and 12d (active) (Scheme 4),
as well as for chemicals 102 (no active) and 20i (active) (Scheme
5). In the last case, we achieve an improvement of cytostatic

activity by increasing of branching attached to carbocycle ring,
in spite of the fact that the ring size decreased.

Another important variable in model 2 is D/Dr06, which has
positive contribution to the anticancer property and means
distance/detour ring index of order 6. D/Dr06 is based the vertex
row sums of D/DD (D, distance matrix and DD, detour matrix)
matrix, allowing one to build local structural invariants of cyclic
systems corresponding to individual atoms or individual frag-
ments of a molecule.64 The ring descriptor is obtained by
summing local contributions of carbon atoms making up the
benzene ring. The indices derived from benzene rings are
descriptors that reflect the local geometrical rather than local
electronic environment of the benzene rings. However, in our
present considerations no electronic factors have been involved;
thus, we end with descriptors that reflect solely the geometrical
features of these systems. This variable increased with number
of condensed and noncondensed cycle systems.64 On this basis,
we can explain the differences between chemical 103 (inactive)
and 10c (active) (Scheme 6a). Both chemicals have two
condensed rings as carbocyclic, but in the case of chemical 10c

Scheme 2.General Procedures for the Preparation of the Test
Set Nucleoside Analogues Belonging to Seriesd, e, f, g, h,
and i

Scheme 3.Molecular Representation of Chemicals 195
(Non-cytotoxic) and 11b (Cytotoxic)

Scheme 4.Molecular Representation of Chemicals 197
(Non-cytotoxic) and 12d (Cytotoxic)

Scheme 5.Molecular Representation of Chemicals 102
(Non-cytotoxic) and 20i (Cytotoxic)

Scheme 6.Molecular Representation of Chemicals 103
(Non-cytotoxic) and 10c (Cytotoxic)
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the addition of two benzene rings increased the D/Dr06 value
and then the cytostatic activity. In addition, for the chemical
10c, the values of piPC10 and piPC09 descriptors increase in
similar order; the first one increases the biological activity while
the second one decreases it. Therefore, piPC10 and piPC09 do
not have a global contribution to cytostatic activity in this
structure.

Similarity/Dissimilarity Searching. As a final exercise, we
have searched for similarities between the natural nucleosides
present in ribonucleic acid (RNA) or deoxyribonucleic acid
(DNA) and the active carbocyclic nucleosides well-predicted
by model 2 (eq 2). The eight natural nucleosides used in this
similarity/dissimilarity searching are (1) deoxythymidine, (2)
deoxycytidine, (3) deoxyadenosine, (4) deoxyguanosine, (5)
uridine, (6) cytidine, (7) adenosine, (8) guanosine. Figure 4
shows the dendogram resulting from the hierarchical cluster
analysis, while Table 5 lists the calculated Euclidean distances.

In general, one can say that the present carbocyclic nucleo-
sides are closely related to adenosine and guanosine (see Figure
4 and Table 5), in particular the indan derivatives (chemicals
6, 7, and 4). In fact, the indan derivatives studied here are
substituted at position 2 and 3 of the cyclopentane ring, and a
similar topological pattern is observed in adenosine and gua-
nosine in which these positions are substituted by hydroxyl
groups.

On the other hand, chemicals2 and 21i from the training
and validation set, respectively, display great similarity to natural

nucleosides as seen in Table 5. Chemical2, which is a
cyclohexane derivative, is more similar to adenosine and
guanosine, while chemical21i, a cyclobutane derivative, is more
closely related to deoxyadenosine.

Conclusions

Here we have examined the ability of a large, diverse, and
consistently tested training set to provide predictive QSAR
models for probing anticancer activity. The training set included
241 nucleoside analogues, derived from purinic and pyrimidinic
bases, and was assembled from literature compounds with
published cytotoxic activity against L1210/0 cancer cells,
whereas another set of 20 NAs, which have been previously
designed by us and synthesized, acted as an external validation
set. The cytotoxic activitiy of 14 compounds from such external
set is being reported here for the first time. This is of great
relevance to the cancer research community, as new compounds
enrich the structural diversity of related databases and could be
used in forthcoming QSARs.

With regard to the QSAR modeling, the combination of LDA
in conjunction with a 2D topological structure representation
and feature selection algorithms was found to produce a final
classification model with good accuracy, internal cross-valida-
tion statistics, and predictability on the external data. This was
followed by a clustering search analysis to identify the similari-
ties to natural nucleosides of the well-predicted active carbocy-
clic nucleosides (from both the training and test sets), and
structural interpretation of the results took into account the
mechanism of action, substitution of DNA bases, responsible
for cytotoxic activity. The information provided by this analysis
showed us that the present carbocyclic nucleosides are, in
general, closely related to adenosine and guanosine, say, in
particular, the indan derivatives. But similarity is more remark-
ably strong for chemical2, a cyclohexane derivative, while in
the case of chemical21i, a cyclobutane, is strongly related to
deoxythymidine and deoxyadenosine. Overall, that structural
information and the QSAR modelper seshall aid in future
design of novel potent anticancer drugs.

Experimental Section

Data Set. All the compounds used here are primarily nucleoside
analogues, derived from purinic and pyrimidinic bases, and were
experimentally assayed for their inhibitory effects (IC50) in the
proliferation of L1210/0 cancer cells. These experiments have been
conducted at the Rega Institute for Medical Research of the
Katholieke Universiteit Leuven in Leuven, Belgium, following the
samein Vitro assay protocol.53 One can rely on the quality of such
biological data, which has been measured by a single protocol, at
the same laboratory, by even the very same staff.

Figure 4. Dendogram and similarities between the active carbanucleo-
sides well-classified (model 2; eq 2) and natural nucleosides after a
hierarchical cluster analysis.

Table 5. Euclidean Distances between the Natural Nucleosides and the Active Carbocyclic Nucleosides, Derived with the Final 2D Orthogonal
Descriptorsa

basesb

DNA RNA

chemical 1 2 3 4 5 6 7 8

6_training 3.363 2.980 3.268 3.919 2.992 2.946 2.765 2.731
7_training 3.526 3.235 3.403 3.995 3.218 3.200 2.955 2.911
3_training 3.976 3.277 3.939 4.657 3.438 3.254 3.334 3.322
4_training 4.001 3.427 3.930 4.596 3.537 3.401 3.379 3.355
2_training 1.060 1.221 1.209 2.207 0.750 1.165 0.474 0.566
10c 7.173 7.073 6.925 7.175 7.041 7.039 6.686 6.608
11d 2.453 2.600 2.514 3.080 2.387 2.574 2.294 2.303
12d 2.392 2.718 2.419 2.914 2.444 2.689 2.293 2.291
21i 0.675 2.205 0.584 1.211 1.551 2.159 1.090 1.050

a The five topological indices included in the orthogonal-descriptor model (eq 2). The less Euclidean distance values between the natural nucleosides and
the active carbocyclic nucleosides are marked in bold.b 1: deoxythymidine, 2: deoxycytidine, 3; deoxyadenosine, 4: deoxyguanosine, 5: uridine, 6:
cytidine, 7: adenosine, 8: guanosine.

1542 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 7 Morales Helguera et al.



The compounds were first clustered into two groups according
to their IC50 values. The first group, actives, includes all chemicals
with IC50 < 200µM, while the second one, inactives, includes those
with IC50 g 200µM. This classification criterion was adopted not
only because over that concentration chemicals can be too toxic
and therefore lack biological value but also to get a reasonable ratio
of active/inactive chemicals in the dataset. We have also discarded
all chemicals with disconnected structures like salts and polymers.
In addition, there are other compounds pairs, geometrical isomers,
which could not be distinguished by the present 2D descriptors
but had nevertheless similar IC50 values; in such cases, one of the
isomers was discarded. Finally, we managed to assemble a large,
balanced dataset of 261 chemicals comprising 96 actives and 165
inactives.

A necessary but delicate task in any QSAR modeling is predictive
validation, i.e., to assess model adequacy for new compounds. The
most reliable way to predictively validate a model is by external
validation,65-67 which consists of making predictions for an
independent set of data not used in the model setup. Here we select
a small subset (20 compounds) of the chemicals from the entire
dataset to act as an external test set. These compounds have been
synthesized in one of our laboratories following usual procedures
(see description below),30-37 and six of them have already been
assayed experimentally in L1210 cells and their activity reported23,24

while the others were evaluated here for the first time. The
remaining chemicals (241 compounds) form the training set. A
complete list of the training set compounds along with the reported
experimental cytotoxicity (IC50 values expressed inµM) is given
as Supporting Information.

Molecular Descriptors. Our study is based on the different sets
of 2D-descriptors available in the DRAGON software (version
2.1),68 which in turn have a long history in structure-activity and
structure-property correlation. They include, for instance, pure
topological descriptors, walk and path counts, connectivity indices,
information indices, or 2D-autocorrelations. Taking into account
the compounds’ structural diversity, an initial subset of 462
descriptors was computed for each molecule from the SMILES
(simplified molecular input line entry specification) inputting of
chemical structures. By disregarding descriptors with constant or
near constant values inside each class, a final subset of 259
descriptors was then used for building the QSAR models.

Modeling Technique. Linear discriminant analysis (LDA),
specifically the LDA technique implemented in the STATISTICA
software (version 6.0),69 will be used here to find classification
models (eq 3), which best describe the cytostatic activityP, as a
linear combination of the predictorX-variables (2D descriptors)
weighted by thean coefficients:

In developing the models,P values of+1 and-1 were assigned
to active and inactive compounds, respectively, buta posteriori
probabilities are used instead to assert the models’ classification
of compounds. In particular, when the probability of being active
did not differ more than 5% from that of being inactive, the case
was considered as not classified (NC) by the model.

Feature Selection. The forward stepwise (FS) technique was
applied to select the molecular descriptors (X-variables) with the
highest influence on the anticancer activity.70 This technique begins
by including the variable which yields the best linear fit in terms
of explaining the response. The next variable is included as that
variable which most significantly improves the existing model. Once
this new model is determined, the variables included are tested to
see if the model can be improved by dropping them from the model.
If the model can be improved, the variable is removed and the
stepwise procedure is repeated until no further variables are either
included or removed.

In any multiple linear-based QSAR it is desirable that the
variables included in the model are not interrelated to each other.
Highly correlated variables clearly contain redundant information
that might be more effectively encoded by a single variable. Further,

and most importantly from the point of view of a QSAR model,
correlated independent variables lead to multicollinearity, which
can cause problems in interpreting the individual estimated
coefficients.71-74 One very useful and informative approach of
avoiding multicollinearity is the orthogonal descriptors technique
suggested by Randic´ some year’s ago.71-73 In the Randic´’s
approach, after choosing a starting descriptor, subsequent descriptors
are added only as their orthogonal complements to the descriptors
already present. This approach has the advantages that the equation
coefficients are stable (i.e., they do not change as new descriptors
are added), and the new information supplied by each additional
descriptor is clearly distinguished in the final equation statistics.
Here, to tackle the multicollinearity problem, we have applied the
Randi’c’s approach and orthogonalized the variables following the
order selected by the FS scheme. The resulting orthogonal-descriptor
model was standardized afterward.

Model Evaluation. Several diagnostic statistical tools were used
for evaluating our model equations, in terms of the criteria
goodness-of-fit and goodness-of-prediction. Measures of goodness-
of-fit have been estimated by standard statistics such as the Wilks’
lambda (λ), the Mahalanobis’s distance (D2), the Fisher ratio (F),
and the correspondingp-level (p) as well as the percentage of good
classifications and the ratio between cases and adjustable parameters
(F). We have also checked the validity of the preadopted assump-
tions, parametric (normality, homocedasticity, and noncollinearity)
and linearity of the model, which is another important aspect in
the application of multiple linear statistical-based approaches75 such
as the LDA technique. Goodness-of-prediction of the final model
has been assessed by means of internal cross-validation (CV),
specifically by the leave-group-out (LGO) technique.76 Basically,
CV-LGO consists of forming several subsets from the entire dataset,
each missing a small group ofk cases (k ) 48, in this case). These
k cases are used to validate a new model that is trained with the
corresponding subset. Quality (goodness-of-fit) of the new models
gives then a measure of the predictive ability of the full model. As
mentioned, we also evaluated the predictability of our final
discriminant model by using an external set of compounds not used
in the model setup. Validation of the final model with compounds,
which are not part of the training set, is a crucial but necessary
step to ensure generalization, and also of great relevance to future
QSAR studies.

Similarity/Dissimilarity Analysis . The task here is to cluster
the active NAs well-predicted by our final classification model
(either from the training set or from the external set), accordingly
to their similarity to natural nucleosides. To this end, we applied a
hierarchical agglomerative cluster analysis based on the Euclidean
distance, using all variables included in the model.

Synthesis. The test set compounds have been obtained from
suitable precursors, such as a diol or an amino alcohol, accordingly
to the classic procedures of nucleosic preparation.1 The chemicals
in seriesa, b, andc were obtained by a coupling reaction like as
Mitsunobu reaction or nucleophlic substitution of respective diol,
suitably functionalized with puric or pyrimidinic bases (Scheme
1). The remaining chemicals, seriesd, e, f, g, h, andi, were obtained
from an amino alcohol by transformation of the amine group into
the corresponding puric or pyrimidinic base (Scheme 2).

Cytostatic Assay. All assays were carried out in flat-bottomed
96-well microtiter plates. To each well were added 5× 104 murine
leukemia cells (L1210/0) and a given amount of the test compound.
The cells were allowed to proliferate for 48 h at 37°C a humidified,
CO2-controlled atmosphere. The growth of the cells was linear
during this 48 h incubation period. At the end of the incubation
period, the cells were counted in a coulter counter (Coulter
Electronics Ltd, Harpenden Herts, England), and the number of
dead cells was evaluated by staining with trypan blue. The IC50

(50% inhibitory concentration) was defined as the compound
concentration that inhibit cell proliferation by 50%, as compared
to untreated control.53

P ) a1X1 + a2X2 +........anXn + a0 (3)
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